DETERMINING THE THERMAL CONDUCTIVITY
OF THIN-LAYER MATERIALS BY THE
INTERPOLATION METHOD

V. S. Vol'kenshtein UDC 536.2.08

The interpolation method is outlined, by which the thermal conductivity of thin-layer materials
can be determined without measuring the specimen thickness and with the effect of thermal
contact resistances eliminated.

The main source of errors in the thermophysical testing of thin-layer materials is the contact re~
sistance, which may be of the same order of magnitude as the thermal resistance of the specimen itself.
When a specimen is very thin, furthermore, the magnitude of the relative error in its thickness measure-
ment may become appreciable, especially in the case of specimens not quite homogeneous fhroughout
their thickness. )

A method will be described which, first of all, eliminates the need for measuring the specimen
thickness and, secondly, eliminates the effect of thermal contact resistances,

A test plate was placed in a vessel containing a liquid with a known thermal conductivity A;. The
thickness of the liquid layer, i.e., the depth of the vessel was either equal to or slightly greater than the
maximum thickness of the immersed specimen. This thickness h could be measured with sufficient ac-
curacy, The "effective" thermal conductivity A; of the liquid—specimen system was also measured.
Then, after the specimen had reached the state of equilibrium with the ambient medium, the effective
thermal conductivity A; of the system was measured with the same specimen immersed in another liguid
with the thermal conductivity A,.

The true thermal conductivity of the test plate is found as follows. The values of ), and A, are
marked on the axis of abscissas, while the effective values h; and A are marked on the axis of ordinates
(Fig. 1). If no specimen were placed in the vessel, then \] = A; and A; = Ay, i.€., these points would lie
on a straight line passing through the origin of coordinates at a 45° angle to the axis of abscissas (with the
same scale on both axes). The presence of a specimen in the vessel makes A # A and A} = Ay. Consequently,

TABLE 1. Relation M? = f(g)
6 | o5 | o5 | o6 | 06 | 07 | 075
M2 | 2,56 | 3,47 | 48 | 7,40 | 11,20 | 17,64

TABLE 2. Relation + = F(9)
8 05 | 058 | o060 | 065 [ 0,70

7, sec for celluloid inoil 19,2 l 27,4 ’ 39,5 ’ 59,6 ! 91,6

7, sec for celluloid in
water ’

15,7 ! 22,4 { 32,0 ‘ 46,8 I 71,0
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Fig. 1. Graph of the relation A' = f(A). Thermal conductivities A" and
A (W/m -°C),

Fig. 2. Schematic diagram of the test setup.

the intersection of the straight line through points A and B with the straight line inclined at 45° yields the
desired value of A.

The relation A' = £()\) is represented by a straight line (as has been verified on several points, with
different liquids) and may be expressed in terms of the equation

A = mh 4+ n. 1)

With the values of A;, Ay, A; and A;, it is not difficult to find the desired thermal conductivity A by the for-
mula

A=l
1—m
where
=M n o= M — mhy = Ay — mh,.
2—7‘1

For illustration, we determined the thermal conductivity of a thin celluloid plate. The plate was not
quite homogeneous throughout its thickness and the latter was not measured. The effective thermal con-
ductivities A} and A, were measured by the method shown in [1].

According to the same method we measured one time interval At = 79—T; corresponding to a change
A8 = 05—, in the relative temperature. Here g, =1 -Ny/Nj and 9, = 1 -N,/N, with N;, N, denoting any
arbitrary divisions on the galvanometer scale G convenient for the measurements (Fig. 2) and N denoting
the division onthe galvonometer scale prior to the beginning of the test, i.e., before heater H had estab-
lished contact with the system,

The thermal conductivity is found here by the formula

L me M, @
2y At QVAT

where the constant b characterizes the thermal activity of heat receiver B and is determined by a calibra-
tion of the latter.

TABLE 3. Relation vAT/M? = o(A0)

(A0), % | 7065 | 70—60 | 70—55 | 70—50 | 65—55 | 65—50 |

M2 | 3,80 | 63 | 7,73 | 864 | 3,93 | 4.8

AT, sec | 32,0 | s2.r | 64,2 72,4 | 32,2 40,4 ([1st-test
V_W’sec ] 2,91i 2,86l 2,88 2,90 2,86 2,89 |thesame

A, sec | 242 | 39,0 | 48,6 | 553 | 24,4 | 31,1 |2nd-test
l/-_[e‘_—_?,sec‘/z 2,53 l 2,48 ‘ 2,51 2,53 2,50 2,54 |the same
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To every value of the relative temperature ¢; there corresponds a definite value of Mj., The relation
M? = £(g) is shown in Table 1. The relation 7 = F(9) has been plotted for several values of g, making it
possible to use several temperature differences Ag from which the mean values VA7/M? for Eq. (2) could
be obtained. The relation M? = f(g) is valid for sufficiently large values of ¢ and for ¢ = A/bva < 1, where
b is the heat receiver constant and g, A are thermophysical properties of the test material. In order to
satisfy the condition 1 in tests, one must use a heat receiver with a large constant b (marble, cement,
etc). In our tests the heat receiver had been made of marble with a thermal activity, according to our
measurements, b = 2430 W -sec!/ 2/m? «°C., The end surface of this heat receiver served as the bottom
of the test vessel. In order to render the results of measurements independent of the contact point be-
tween the thermocouple junction and the system (with the liquid or with the specimen), the junction was
separated from the system by a thin metallic foil 10 x 10 mm?® in area. The depth of the vessel was h
= 0,50 mm. As reference liquids we used technical-grade oil (A; = 0.124 W/m .°C) and water (A, = 0.580
W/m *°C),

The results of measurements are shown in Table 2 and an evaluation of thesetwo tests is given in
Table 3.

From the data in Table 3 we find the values of the quantity (Ar/M%)Y2: 2.88 sec'/? for the first test
and 2.515 sec'/? for the second test. From this we have

o |
3 = 22305107 911w mec and ;= 0.241

2.2.88
With the values of Ay, A9, A{, and A} known, we find the coefficients m and n for Eq. (1):
m = 0,066 andn = 0.203W/m-°C.
The desired thermal conductivity of celluloid is then
b= 0.22W/m.C.

The same value can be found from the graph in Fig, 1.

NOTATION

A is the thermal conductivity;

A' is the effective thermal conductivity;
t is the temperature;

tyy is the heater temperature;

7 is the time,
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